Constrictive Binding by an Octalactone Hemicarcerand

Mimi L. C. Quan, Carolyn B. Knobler and Donald J. Cram*

Department of Chemistry and Biochemistry, University of California at Los Angeles, California 90024, USA

The synthesis, characterization (including a crystal structure determination) and constrictive binding properties of a hemicarcerand are described.

We reported previously the synthesis of a hemicarcerand with one opening in its shell through which guests such as Me_2NCOMe , Me_2NCHO and Me_2SO incarcerated during shell closures could be expelled at high temperatures. New guests of sizes complementary to or smaller than the hemicarcerand's interior were then introduced at appropriate temperatures to give isolable 1:1 complexes with guests such as MeCN, CS_2 , pyridine, CH_2Br_2 and xenon.¹

Here we report the synthesis, crystal structure and binding properties of hemicarcerand 1 with a cavity of much larger

1.Cl2CHCHCl2.2PhNO2

2, X = H, R = CH₂CH₂Ph **3,** X = Br, R = CH₂CH₂Ph

4, X = Br, $R = CH_2CH_2Ph$ 5, X = OH, $R = CH_2CH_2Ph$

dimensions and with four large portals that can admit and accommodate larger guests. The synthetic sequence, resorcinol + dihydrocinnamaldehyde $\rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$, has been reported.¹ Treatment of 5 with isophthaloyl dichloride–Cs₂CO₃–Me₂NCOMe (dry) at 65 °C under argon for four days gave 1·G, which was purified by silica gel chromatography with CH₂Cl₂ as the mobile phase to give 1·CH₂Cl₂ (5% yield; R_f 0.27, silica gel, CH₂Cl₂; FAB MS, M + H⁺, m/z 2554, 100%; anal. calcd. for C₁₆₀H₁₂₀O₃₂ + CH₂Cl₂, dried at 120 °C for 12 h, C, 73.3 H, 4.7. Found: C, 73.4; H, 4.4%). When heated in Cl₂HCCHCl₂ at 110 °C under argon for 12 h, 1·CH₂Cl₂ underwent guest exchange to give (after silica gel chromatography, CHCl₃) 1·Cl₂HCCHCl₂ (90% yield; R_f 0.27, silica gel, CHCl₃; FAB MS, M·Cl₂HCCHCl₂+, m/z 2720 cluster, 90%, M + H⁺ m/z 2553 cluster, 100%; anal. calcd. for C₁₆₀H₁₂₀O₃₂ + C₂H₂Cl₄: C, 71.5, H, 4.5, found: C, 71.55, H, 4.5%)

A sample of $1 \cdot Cl_2HCCHCl_2$ was recrystallized from PhNO₂ to give $1 \cdot Cl_2HCCHCl_2 \cdot 2PhNO_2$ to give crystals suitable for

crystal structure determination (R = 0.12).[†] Notice in the stereoview of the result that Cl₂HCCHCl₂ resides in the cavity with its long axis roughly coincident with the long axis of the host. One molecule of PhNO₂ solvate is inserted between the four CH₂CH₂Ph groups attached to the top, and a second between those attached to the bottom of the central globe-shaped container.

The 360 MHz ¹H NMR spectrum of 1, whose H^{*a*} and H^{*b*} protons protrude into the cavity, is complicated since each of the four bislactone bridging groups contains one *syn* and one

[†] Crystal data for: 1, triclinic, space group PT, a = 15.884(7), b = 15.985(7), c = 21.691(11) Å; $\alpha = 101.878(8)$; $\beta = 108.085(9)$, $\gamma = 96.142(9)^\circ$, U = 5036 Å³, Z = 1; 10347 reflections; 3630 with $I > 3\sigma(I)$ used in structure solution, $2\theta_{max} = 100^\circ$, Cu-Kα radiation, Syntex PT diffractometer. Final R 0.125, R_w 0.165. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre See Notice to Authors, Issue No. 1.

anti conformation. The δ values of H^a (singlets) are guestsensitive, while those of H^b (doublets) are both conformationand guest-sensitive. For example, in CDCl₃, the H^a protons of 1 CDCl₃ give δ 8.55, whereas those of 1 Cl₂HCCHCl₂ give δ 8.85. The eight H^b protons of 1 CDCl₃ give three types of signals, δ 5.07 (2H), 4.72 (4H) and 4.62 (2H). The corresponding eight H^b protons of $1 \cdot Cl_2HCCHCl_2$ signals are $\delta 4.39$ (2H), 4.67 (4H) and 4.39 (2H). We conclude that the H^b chemical shifts are moved upfield by the shielding carbonyl groups whose positions are rigidified by the larger $Cl_2HCCHCl_2$ as compared to the smaller $CDCl_3$ guest solvent. The two sets of two H^b protons that provide the larger $\Delta\delta$ values (0.23 to 0.68 ppm) are those located between the two inward-turned carbonyl groups. The one set of four H^b protons that provides the smallest $\Delta\delta$ value (0.05) is flanked by one inward- and one outward-turned carbonyl group. This interpretation is consistent with 1 Cl₂HCCHCl₂ having the same conformational arrangement of lactone linkages in the crystal as it has in solution. The proton signal of the guest at δ 6.13 in $1^{\circ}Cl_2HCCHCl_2$ is 0.17 ppm downfield of free $Cl_2HCCHCl_2$ dissolved in CDCl_3. At higher temperature, the lactone conformations of 1[•]Cl₂HCCHCl₂ in Cl₂DCCDCl₂ equilibrate to provide a symmetrical time-average ¹H NMR spectrum with T_c for H^b of 80 °C, and a ΔG^{\ddagger} value for the transition of *ca*. 18 kcal mol⁻¹ (1 cal = 4.184 J).²

Complex $1 \cdot Cl_2HCCHCl_2$ is stable indefinitely at room temperature as a solid or in solution, but slowly decomplexes at 100–134 °C. The first-order rate constants for decomplexa-

tion of $1 \cdot \text{Cl}_2\text{HCCHCl}_2$ in $\text{Cl}_2\text{DCCDCl}_2$ to give $1 \cdot \text{Cl}_2\text{DCCDCl}_2$ were followed by the disappearance of the ¹H NMR signal for the guest protons at δ 6.13 (7 points per run) at 100, 112, 122 and 134 °C, whose van't Hoff plot provided $E_a = 24.6 \pm 4.7$ kcal mol⁻¹ for the decomplexation. At 100 °C the $t_{1/2}$ value was 18 h. We believe the complex is held together largely by steric interactions that inhibit decomplexation. We propose the term, *constrictive binding*, to describe this type of interaction which holds host–guest complexes together. It probably accounts for a major part of the activation free energy for dissociation of $1 \cdot \text{Cl}_2\text{HCCHCl}_2$.

A survey employing ¹H NMR and TLC criteria for complex formation was conducted for $1 \cdot CH_2Cl_2$ when dissolved in potential guests as solvents. Of those tried, acetylmorpholine and *o*-dichlorobenzene formed characterizable complexes at 110–125 °C, whereas *p*-dichlorobenzene, *p*-xylene, tetrabromoethane, *p*-cyanotoluene, nitrobenzene and triethyl phosphate failed to provide isolable complexes.

Received, 21st January 1991; Com. 1/00265A

References

- 1 M. E. Tanner, C. B. Knobler and D. J. Cram, J. Am. Chem. Soc., 1990, 112, 1659.
- 2 J. Sandström, *Dynamic NMR Spectroscopy*, Academic Press, New York, 1982, p. 96.